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An asymptotic solution of the problem of determining the frequency spectrum 

of natural vibrations of shells of revolution is given. The order of the error hence 
admitted is estimated in an example of evaluating the zeroes of Bessel functions. 

The question of the density of the frequency distribution is discussed. A compa- 
rison with the results obtained in [l],as well as with an empirical frequency den- 
sity, is given in the example of cylindrical and closed spherical shelis. 

1. Let a shell of revolution vibrate with the frequency w. Then the vibration mode 
can be found from the equations given in f2], which are, when tangential inertial forces 

are neglected, 

IJAAo - A& - phdw = 0, (Eh)-f AA* t Ag.o = 0 (1.1) 

Here w is the normal deflection function, and s/r the stress resultant function in the 
middle surface, Selecting the arclength x along a generator and the angle 8 measured 
in a circumferential direction as coordinates, we arrive at expressions for the operators 

used in (1.1) 

where r (Z) is the distance to the axis of the shell of revolution, and HI, &, are the 

radii of curvature of the shell. 
Let us seek the solution of (1.1) by extracting the rapidly varying factors [3, 41 

0 (5, 0) = W (I(.) exp[if @)I cos n0, 11, (z, 6) = Y (3) exp [if (3)l cos &I (1.2) 

The functions w (Z), y (z) and the derivative & / & = f’ (5) will be considered to 
vary slowly, so that the components w’, uf’, f” can be neglected as compared with 

f’w, i”f’, (j’)2_ Substituting (1.2) into (X.1) we see that if the function f’ (x} is known, 
the natural vibrations frequency can be found from the expression 

The quantities I’ and n / r are analogs of the wave numbers k,, k2 used in Cl]. For 
a known frequency expression (1.3) should be treated as an equation to determine f’. 
Let us study this equation in more detail. 

2, For some frequency let (1.3) have no real roots for part of the shell. The deform- 
ation of this part of the shell, later called a zero-type zone, is almost quasi-static. 
This part of the shell plays the part of an elastic frame for the rest of the shell. The 
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solutions in the zero-type zone will be of the edge effect type. From the structure of 
(1.3) there results that two kinds of vibrating zones of the shell are possible. The first 

rype is characterized by there being only one positive real root. Characteristic for the 

zone of the second type is the presence of two real positive roots; the case of degenera- 
tion of the dynamic edge effect [S] holds. We obtain the zone boundary by setting /‘= 
= 0, which yields 

pho,’ _=~ 1); -,m Eh & (2.1) 

We find the other boundaries by assuming that a real positive root of multiplicity two 
exists. The equation of the boundary is 

aZ(223- 12 KC2) $- ( 23 _ Lth’& _I. 18 K&q (‘)z” - g&2 - ;; US;;) .z u 

UC (2” + 12Kc’) (9 - 4Ac2z + 18fwc’)-1 + 1 < 0 (2.2) 

The characteristic radius K can be taken constant. The lines along which the inequality 
in (2.2) is not satisfied are not the boundaries. 

If the number n is small so that the strong inequality /)u? rd4 < E/LH,-’ is pot sat- 

isfied, then the degenerate equation of [6] (equation (1.3) without the first member on 
the right side) can be used to determine the roots in the zone of the second type. The 
lines (2.1) can be boundaries between zones of zero-type and zones of the first type, as 

well as between zones of the first and second types. The lines (2.2) are boundaries be- 

tween zones of the second and zero types. Examples of the partitioning of the middle 

(a) 0) 

Fig. 1. 

surface of shells of revolution are presented in Fig. 1. 

3, The approximate determination of the natural vibration frequencies will be dist- 
inct, depending on the manner of alternation of the zones of zero, first and second types. 

Let us first examine the simplest case when there are no zones of second type (Fig. la, 

b). The function f (x) acquires some increment in each of the zones of first type. Let 
us consider the vibrations to originate only when this increment is a multiple of n. If 
there are several zones of the first type, then as a rule,vibrations will be observed in 

only one of these zones at a certain natural frequency. 
Let us consider the general case when there are zones of all three types (Fjg. lc). Let 

a zone of second type be surrounded by zones of zero type. In this case, only an upper 

bound can be estimated for the number of natural frequencies. For the upper bound let 
us consider the natural frequencies to correspond to increments of one of the functions 
f (x) which are multiples of n. In reality, part of the frequencies found may not be 
realized. If a zone of the second type bounds at least one side of a zone of the first 
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type, then all the frequencies are realized. For example, let a zone of the second type 
be the bounda~ of zones of zero and first types, and let a zone of zero type follow a 

zone of first type. In this case, two kinds of vibrations are possible. The first kind is 
associated with the lesser root and corresponds to vibrations just in the second zone. The 

increment of the appropriate function f (x) should be a multiple of X. The second kind 
is associated with the highest root and corresponds to vibrations in the first and second 

zones. Analogously, when zones of the zeroth, second, first, second and zeroth types 

alternate, vibrations in each of the zones of the second type. as well as simul~neo~ 
vibrations in all three zones are possible. 

To estimate the error admitted, let us consider the problem of calculating the roots 

of the Bessel function 1, (y). The equation has the form 

d”w 
a+ (3.1) 

Examining the solution of (3.X) in the segment [O, 1) under the condition of boundedness 

as x-+ 0 and the condition w = 0 far x = 1, 
we obtain the exact equation I, (y) = 0 and 

the approximate equation (3.2) 
It [ (@-2 _ *)I:, - arc sin (1 - n2y-7’9 = mz 

The results of calculating the roots of (3.2) 
are presented in Fig, 2 as dashed lines. The 
exact dependencies are given by the solid 

lines. A comparison shows that the error of the 

approximate formula does not exceed x for all 
values of m and n. 

Fig. 2. 
4. As illustrations, let us consider the vib- 

rations of cylindrical and closed spherical shells. 

Two cases are possible for a circular cylindrical shell (R, = iz, H, = R) of length 

E In the first case the whole shell is a zone of zero type and in the second a zone of 

the first type, The solution of (1.3) for f’ is independent of the coordinates. From the 

condition that the increment f (cc) must be a multiple of the number rc, we obtain f’= 
= nml-1. For the frequencies we find the expression 

0 = 00 f 0% 4 
Here 

The number of frequencies IV (w) less than 0 and the density of the frequenciesn (o)= 

= dN / do are given by the approximate formulas 

~(~)=~~d~d~ (S:j@, R)<@/OO) 
s 

(4.1) 
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Here 6&, = o,m,S. Formula (4.1) agrees with the corres~nding formula obtained in 
[l]. To compute the multiplici~ it is sufficient to double the densities found. For w = 

= oI there is a point of frequency concentration. The frequency a* equals the frequen- 

cy of natural axisymmetric membrane vibrations. Singularities in the densities of the 
natural frequency distribution of thin shells were first mentioned in Cl]. 

In the case of a closed spherical shell R, = R, = R for n $3 0 there are zones of 
zeroth type near the poles, which bound a zone of the first type. The equation to deter- 
mine f’ (z) turns out to be a biquadratic. The solution of this equation is 

From the condition f’ = U t.~e find the limits of integration 

The frequency equation is 
2s 

J 
i’(.Z)ds=mjt (m = i, 2, . . .f 

x1 

We hence obtain an approximate expression for the frequencies 

w = 00 [(m + n)4 + m*+ 

The number of frequencies N (0) less than o is given by a formula raking account of 
the multiplicity of the frequencies 

The density of the frequency spectrum of the vibrations is 

dN (0) oo,a 
-Lv n(a)= do - (W~o-a_, 4 ‘la 

0 ') 

(i.2) 

The frequency density equals zero for o < o* and tends to os-1 as the frequency grows. 

The frequency o* corresponds to the membrane vibrations frequency of a spherical shell. 

Fig. 3. 

The limit value og-’ agrees with the frequency 

density for a plate of area &CR”, i.e., the area 
of the whole spherical shell. Formula (4.2) can 

also be obtained by integrating the frequency 

density from [l] over the area of the shell sur- 

face, 
Presented in Fig. 3 are results of calculating 

the reduced frequency density @,n (o). Curve I 
has been obtained by means of (4.9). Curve 2 

corresponds to averaging the number of frequ - 
encies obtained by exact integration of (1.1) over the sections. 

BIBLIOGRAPHY 

1. Bolotin V. V,, On the density of distribution of natural frequencies of thin ela- 
stic shells. PMM Vol. 27, No2, 1963. 

2, Vlasov V.Z., Basic differential equations of the general theory of elastic 



Frtqwncy spectra of natural vibrations of shells of revolution 283 

shells. PMM Vol. 8, N’2, 1944. 

3. Moiseev N. N, , Asymptotic Methods of Nonlinear Mechanics. Moscow, Nauka, 

1969. 

4. Moskalenko V. N., On the vibrations of conical shells. Collection of Reports 
of the Scientific-Technical Conference Surveying the Scientific-Research Work 

in 1966-1967. Moscow Power Inst. Electrical Machine Construction Section. 
Dynamics and Strength of Machines Subsection. Moscow 1967. 

5. Bolotin V. V., The edge effect in the oscillations of elastic shells. PMM Vol. 

24, No5, 1960. 
6. Kornev V. M., Determination of the critical loadings and buckling modes of 

elastic shells of revolution. Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, ?P2,1970. 

Translated by M. D . F . 

UDC 539.3 

ON THE THERMODYNAMIC INTERPRETATION OF THE EVOLUTIONARY 

CONDITIONS OF THE EQUATIONS OF THE MECHANICS OF FINITELY 

DEFORMABLE VISCOELASTIC MEDIA OF MAXWELL TYPE 

PMM Vol. 36, Np2, 1972, pp. 306-319 

I. M. RUTKEVICH 
(Moscow) 

(Received December 30, 1970) 

A thermodynamic interpretation is given of the phenomenon of the loss of evol- 

utionarity in the hydrodynamics equations of viscoelastic incompressible fluids 

corresponding to models proposed in [ 1, 21. 
A Clausius inequality is formulated for the virtual perturbations of the equili- 

brium parameters on the basis of the second law of thermodynamics and propo- 

sitions on the local thermodynamic equilibrium in a small particle of a contin- 

uous medium [3]. 
Properties of reversible instantaneous deformations in the considered media 

are investigated and the form of the integral energy is found. The internal energy 
in the Oldroyd models [l] depends on the first invariant of the viscoelastic stress 

tensor, but can also be expressed in terms of the reversible strain components. 
In the De Witt model [Z] it depends on the second invariant of the stress tensor 
and is nonlocal relative to the reversible strain. 

Necessary conditions for the thermodynamic stability are obtained by using 
the expressions found for the internal energy and the Clausius inequality. Con- 
straints on the principal values of the viscoelastic stress tensor result from these 
conditions which have been established earlier on the basis of demands for the 

evolutionarity of the corresponding systems of hydrodynamics equations [4, 51. 

1. Clau8iu1 inequality ELI a requirement for the 8trb;llity of the 
local thermodynrmlc equilibrium of an alcmsnt of 8 contlnuoul 


